X-Ray Spectroscopy of Ultra-Thin Oxide/Oxide Heteroepitaxial Films: A Case Study of Single-Nanometer VO2/TiO2

نویسندگان

  • Nicholas F. Quackenbush
  • Hanjong Paik
  • Joseph C. Woicik
  • Dario A. Arena
  • Darrell G. Schlom
  • Louis F. J. Piper
چکیده

Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically < 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe a low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Our results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. More generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of vanadium dioxide thin films on conducting oxides and metal–insulator transition characteristics

We report on growth and physical properties of vanadium dioxide (VO2) films on model conducting oxide underlayers (Nb-doped SrTiO3 and RuO2 buffered TiO2 single crystals). The VO2 films, synthesized by rf sputtering, are highly textured as seen from X-ray diffraction. The VO2 film grown on Nb doped SrTiO3 shows over two orders of magnitude metal–insulator transition, while VO2 film on RuO2 buff...

متن کامل

Fabrication of Graphene Oxide Thin Films on Transparent Substrate via a Low-Voltage Electrodeposion Technique

Graphene oxide (GO) thin films were simply deposited on fluorine doped tin oxide (FTO) substrate via a low-voltage electrodeposition. The GO and GO thin films were characterized by Zeta Potential, X-ray diffraction, Ultraviolet-Visible spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive X-ray spectrosc...

متن کامل

Titanium monoxide ultra-thin coatings evaporated onto polycrystalline copper films

We evaporated polycrystalline copper thin films of thickness between 10 and 100nm on silicon substrates with their native oxide under ultra-high-vacuum conditions. Some of them were exposed to air for a period ranging from 1 day to 2 weeks. X-ray photoelectron spectroscopy (XPS) revealed a clean copper surface with a trace of oxygen. These films that were exposed to air presented oxides in the ...

متن کامل

HETEROEPITAXIAL GROWTH OF TiO2, VO2, AND TiO2/VO2 MULTILAYERS BY MOCVD

Titanium and vanadium dioxide systems were selected to study the MOCVD process for the growth of oxide epitaxial films. Single-crystal Ti02 and V02 films in single and multilayered configurations have been successfully grown on sapphire (a-Al203) single-crystal substrates. Seven distinct epitaxial orientation relationships between the films and the substrates were observed. Discussion on these ...

متن کامل

Thermal Oxidation Times Effect on Structural and Morphological Properties of Molybdenum Oxide Thin Films Grown on Quartz Substrates

Molybdenum oxide (α-MoO)thin films were prepared on quartz and silicon substrates by thermal oxidation of Mo thin films deposited using DC magnetron sputtering method. The influence of thermal oxidation times ranging from 60-240 min on the structural and morphological properties of the preparedfilms was investigated using X-ray diffraction, Atomic force microscopy and Fourier transform infrared...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015